

Institute of Roll Design

Ed Hofheins Product Manager - Ceramics

Lathe Tooling: Failure Modes & Improved Grades

Inserts

Geometries

Edge Preps

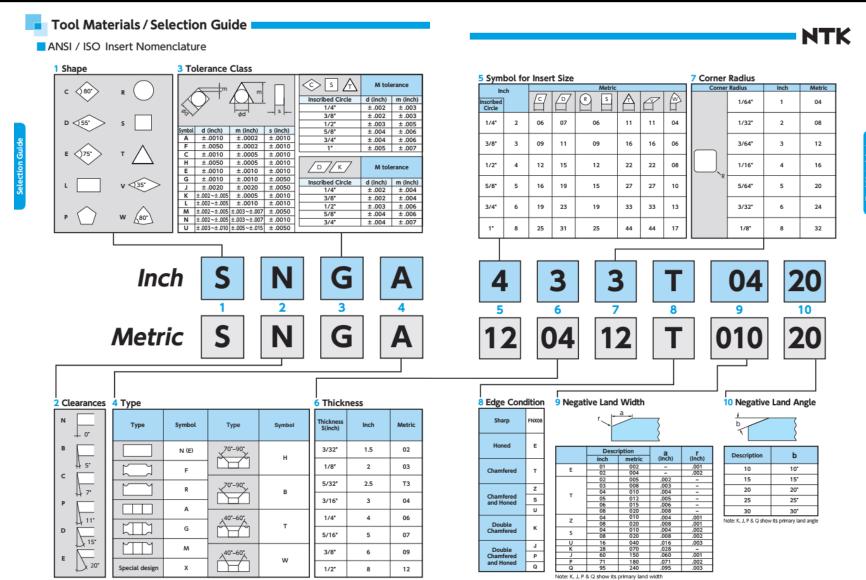
Improved Grades

Lathe Tooling

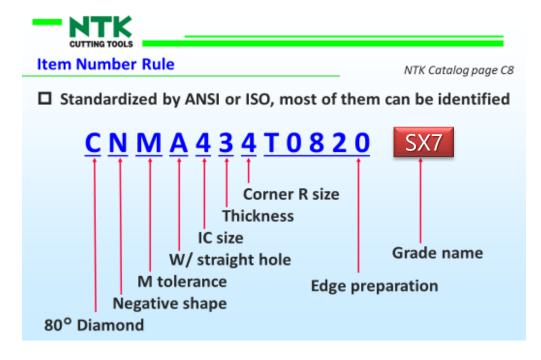
Styles

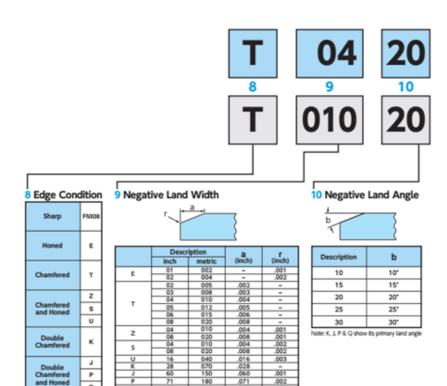
Hardware

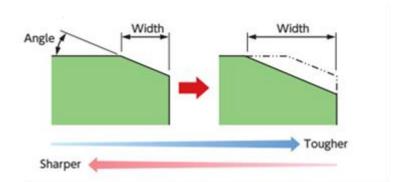
Do's & Don'ts


Failure Modes

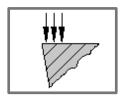
Insert Markings

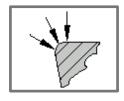

Insert Nomenclature and Edge Prep

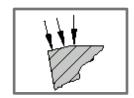




Note** Some inserts used in Steel Mills or blueprint specials do not follow this designation.


Larger T-land results in a tougher edge = More tool Pressure on part. Smaller T-Land results in a fragile edge = Less tool Pressure on part


Greater Angle T-land results in a tougher edge = More tool pressure on part. Less Angle T-land results in a fragile edge = Less tool pressure on part.

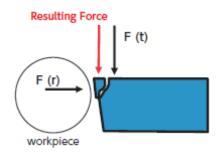


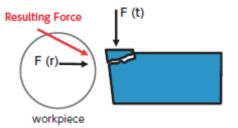
Dealing With High Tool Forces

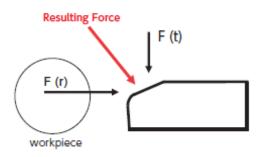
- Sharp Edge
 - a) Lower Tool Pressure
 - b) Clean Cutting Action
- Honed Edge for Carbides and Ceramics, Stronger than Sharp
- T-Land Edge for Ceramics, puts edge in compression, feed dependent

Leading in Innovation

Edge Prep and Directing of Cutting Forces

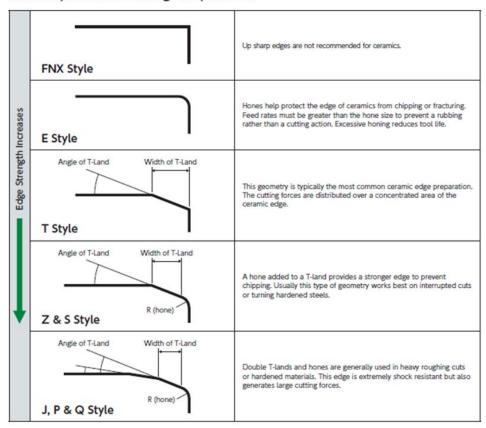

Importance of edge preparation


A combination of a high tangential force and a sharp insert edge can result in edge breakage. This is due to unbalanced radial and tangential forces. An example, at tool path entry or during interrupted cutting, all the pressure is directed into the top of the insert. This increases the risk of chipping.


A combination of high radial forces and a sharp insert edge can result in edge flaking. An example, If the feed rate is too high, the force generated will overpower the insert and cause flaking to occur.

"Over center"

This insert is placed in compression with the addition of a chamfer on the edge reducing the chances of breaking or flaking. Radial and tangential forces are balanced to provide the best tool life. The resulting force is directed into the body of the insert; and is achieved with a negative insert geometry with a chamfer and hone for the edge preparation.

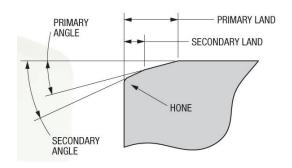


■ Edge Conditions are a Key to Success

An important factor for achieving success when machining with ceramic inserts is to use the correct edge preparation. Ceramic is a hard material therefore the insert needs some edge work in order to withstand cutting forces and optimize the cutting tool performance. The edge preparation must correspond to the ceramic grade selected, the type of HRSA material being machined and the machining operation being performed. The majority of ceramic applications can be handled with NTK's standard edge preparations.

In unique circumstances that may arise, an edge preparation may need to be specialized to meet the conditions.

■ Description of Insert Edge Preparations



Insert Markings Specialty edges

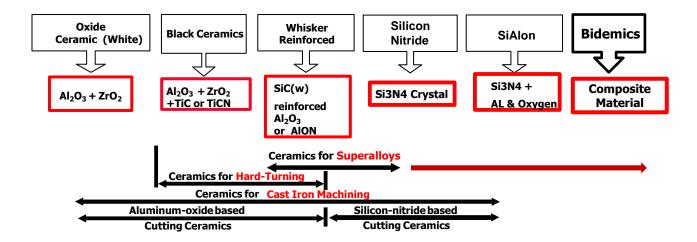
Style	Symbol
Double Chamfer with A hone	P
Double Chamfer with B hone	Q
Double Chamfer without hone	K

Primary Land Length & Angle	Inch	Metric
.028" X 15 deg.	2815	07015
.060" X 15 deg.	6015	15015
.079" X 15 deg.	7915	20015
.091" X 15 deg.	9115	23015

Example:

Cumont Designation	New Designation			
Current Designation	Inch	Metric		
CDH515C2.0X15SA HC7	P7915	P20015		
LNJ6688C1.5X15SA HC7	P5915	P15015		
RCGX105C2.0X20A HC2	S8020	K20020		
ZT1130C2.3X20SA HC2	P7920	P7920		

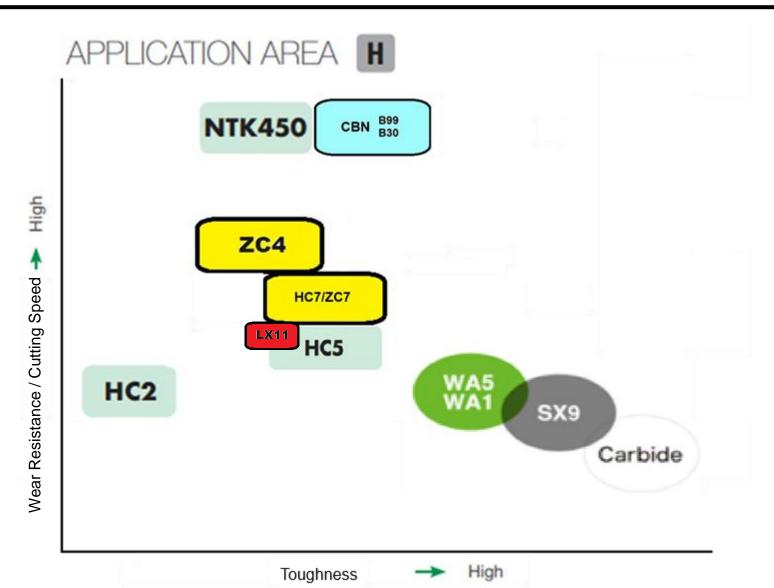
NTK Ceramic Grades



Classification of Cutting Ceramics Innovation

6 Main Classes

Ceramic Grades


Ceramic Series

					Physical F	roperties	;		
	Grad	de / Coating	Density	Hardness	Bending Strength	Young's Modulus	Thermal Expansion Coefficient	Thermal Conductivity	Applications
			g/ani	HRA	MPa	GPa	X10 ⁻⁶ /K	W/m·K	
	HC2	\$	4.3	94.5	800	420	7.9	21	General purpose grade; cost effective Semi- finishing to finishing of cast iron mill rolls Machining of hardened materials
based	HC5	9	4.3	95.0	900	420	7.8	25	Roughing to finishing cast iron and steel mill rolls. Turning of hardened steels up to 62Rc.
a + TiC	HC7		4.6	95.0	1100	420	7.9	23	Turning of hardened steels in the 50-62Rc range. (demanding applications) Semi-finishing and finishing of cast iron
Alumina	ZC7	TiN	4.6	95.0	1100	420	7.9	23	Machining hardened materials even in soft to hard turning applications (50-62Rc) Semi-finishing and finishing cast iron; chilled iron
	ZC4	TIN	4.6	95.5	1000	420	7.8	25	Finish machining of hardened materials (60-70Rc)
SIAION	SX9		3.3	93.5	1200	330	3.0	15	Semi finishing cast iron and ductile rolls
Whisker (Al:Os+SiG)	WA1	\rightarrow	3.7	94.5	1200	400	7.0	35	Roughing to Semi-finishing of carbide mill rolls. Roughing of hardened rolls.(45-62Rc) Semi finishing to finishing of cast iron

Ceramic Grades

Grey & Ductile Iron

Alumina TiC-based ceramics (Black ceramics)

[Gray cast iron, Finishing, WET, Black ceramic]

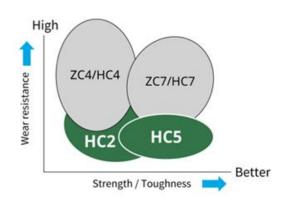
Alumina TiC-based ceramics are strengthened by adding hard carbide to highly pure alumina. This process results in ceramic materials that shows excellent performance in either wet or dry cutting conditions. As an added benefit, hardness and toughness has been improved which enables the machining of partially interrupted cuts. This ceramic material has both high-hot hardness and low plasticity needed to cut hardened materials.

[Machining of hardened materials]

HC2 The standard grade for machining cast iron and hardened materials

- Well-balanced content of aluminum oxide and titanium carbide (Al₂O₃+TiC) sintered under pressure
- Stable performance under a wide range of machining conditions
- General purpose ceramic which works well in a wide range of cutting applications

Grade	Work material	Application	Purpose	Cutting speed (SFM)	Feed (IPR)	Depth of cut (inch)	DRY	WET
uco	Gray cast iron	Turning	Semi finish-Finish	1200-2100	.004016	.020060	•	•
HC2	Mill rolls (Cast iron)	Turning	Semi finish-Finish	150-500	.003008	.020140	•	


Roll Specific Grade

All-purpose grade for machining gray cast iron and hardened materials

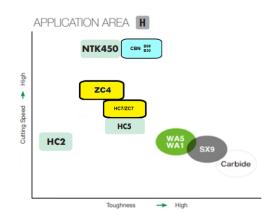
Well balanced grade between wear resistance and chipping resistance

Application


Gray cast iron / Semi to finishing with continuous machining Hardened materials / Finishing Hardened and cast iron mill rolls / Semi to finishing

- Developed for use in hard turning applications for mill rolls
- Excellent toughness combined with wear resistance

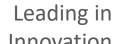
Grade	Work material	Application	Purpose	Cutting speed (SFM)	Feed (IPR)	Depth of cut (inch)	DRY	WET
HCF	Mill roll (Cast iron)	Turning	Rough=Finish	450-600	.004012	.025075	•	
HC5	Mill roll (Steel)	Turning	Rough-Finish	450-600	.004=.012	.025•.075	•	



Grey & Ductile Iron

- Semi Finishing
 - Cast Iron
 - Ductile Iron
- Very "Tough"

SX9

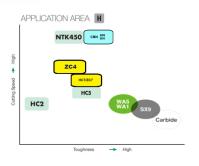

Best grade for roughing Inco 718 with scale

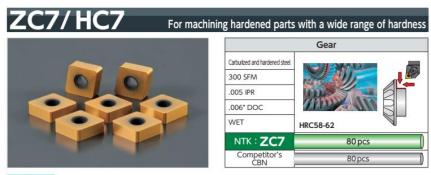
- Excellent notch wear resistance
- Better flank wear resistance compared to competitor's silicon nitride ceramics
- Superior toughness compared to Whisker-reinforced ceramics
- Best thermal shock resistance
- Best grade for roughing Inco 718 with scale

Housi	Housing (Inco 718 with scale)									
	Comp. Whisker	SX9								
Shape	RCGX45	1								
Cutting speed (SFM)	600	+	3.983							
Feed (IPR)	.005									
Depth of cut (inch)	.100									
	WET	+								
NTK: SX9	High productivity									
Competitor's Whisker ceramic										

Grade	Work material	Application	Purpose	Cutting speed (SFM)	Feed (IPR / IPT)	Depth of cut (inch)	DRY	WET
		Turning	Rough scale	600-800	.008014	.040200		•
SX9	Heat resistant allov		Rough no scale	600-800	.008016	.040100		•
3/3	Heat resistant alloy		Semi finish / profiling	600-800	.004012	.040080		•
		Milling	-	1500-3500	.004006	.040100	•	

Hardened & Stainless Steels Innovation


ZC4: Finishing of Hard Rolls (60-70Rc)


Features

- TiN-coated premium ceramic grade with the finest grain size of all the NTK ceramic grades
- Best for hard turning applications from (HRC 55 70)
- The gold coating makes edge wear easily detectable

Grade	Work material	Application	Purpose	Cutting speed (SFM)	Feed (IPR)	Depth of cut (inch)	DRY	WET
ZC4	Hardened material (HRC55-70)	Turning	Finish	130-700	.003008	.005030	•	•

ZC7: Machining Hardened Rolls (50-62 Rc)

- Excellent wear resistance in a wide range of applications such as machining carburized or induction hardened steels (HRC 30 - 62)
- High quality surface finishes with wiper facet inserts
- TiN coated ZC7 is available in various geometries as standard

Grade	Work material	Application	Purpose	Cutting speed (SFM)	Feed (IPR)	Depth of cut (inch)	DRY	WET
ZC7	Hardened material (HRC30-62)	Turning	Finish	130-700	.003008	.005030	•	•
HC7	Mill roll (Steel / Cast iron)	Turning	Rough - Finish	450-600	.004012	.025075	•	

- (HSS) High Speed Steel Rolls
- Titanium Carbide Rolls

Hardened & Stainless Steels

Leading in Innovation

- Roughing to Semi-Finishing of Carbide Rolls
- -Roughing of Hardened Rolls (45-62 Rc)
- -Semi Finishing to Finishing of Cast Iron

- (HSS) High Speed Steel Rolls
- Titanium Carbide Rolls

- Good flank wear resistance at high speed
- Best notch wear resistance compared to competitor's Whisker-reinforced ceramics
- Increased toughness compared to competitor's Whisker-reinforced ceramics

Recommended applications

Grade	Work material	Application	Purpose	Cutting speed (SFM)	Feed (IPR)	Depth of cut (inch)	DRY	WET
			Rough no scale	600-1000	.005010	.040100		•
	Heat resistant alloy	Turning	Semi finish Profiling	600-1100	.004010	.020080		•
			Grooving	600-1100	.002004	-		•
WA1	Gray cast iron	Turning	Semi finish Finish	1200-2100	.004016	.020120	•	•
	Mill roll (Carbide)	Turning	Rough-Semi finish	150-500	.003008	.020140	•	
	Hardened Material (HRC 45-62)	Milling		550-850	.0025005	.030075	•	

Grade: NTK450

NTK450

NTK CeramiX, a new material that maximizes the performance of ceramics, is born

Establishing an intermediate position between CBN and ceramics Higher economic efficiency enables insert cost reduction

Performance

- Higher wear resistance performance with newly developed coating and dense, homogenized base material structure
- Ideal for small-lot production or single-part production when balancing tooling cost and performance

Insert cost and cutting distance

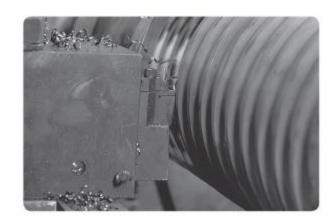
Application

Hardened materials Continuous machining HRC55-65

Currently only available CNGA,DNGA,TNGA,VNGA (Other Geometries to come)

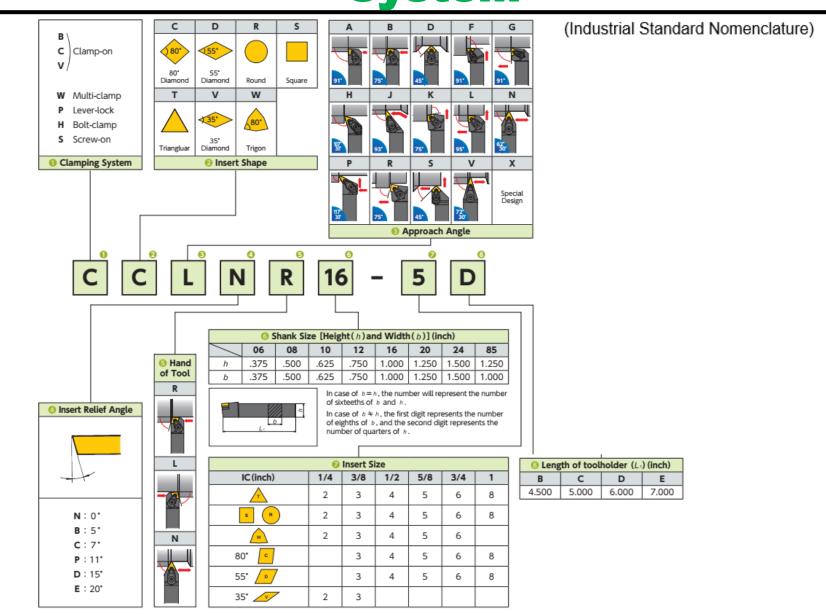
CBN Grades

CBN


	Grade	Style	Main Binder	CBN Volume	Coating	Applications
NN on Nitride)	B99	Solid	AIN	93%	_	High speed cast iron and mill roll machining
CBN (Cubic Boron	B30	Brazed	Ti	95%	-	Semi-finishing of carbide mill rolls. Semi-finishing to finishing of cast iron.

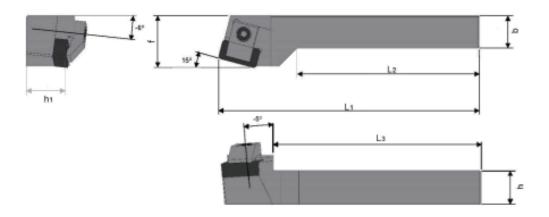
Machining Mill Rolls With NTK Grades

- In addition to our general purpose ceramic HC2 grade, NTK offers HC5, and HC7 for higher productivity
- WA1's wear resistance is an advantage when roughing carbide and hardened rolls
- ZC7 covers a wide range of applications such as carburized or induction hardened steels.
- ZC4 performs the best in hardened material applications from 60-70 Hc


Tool Holders

Holder Identification System

Leading in Innovation

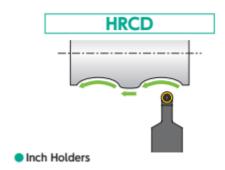


Tool Holders

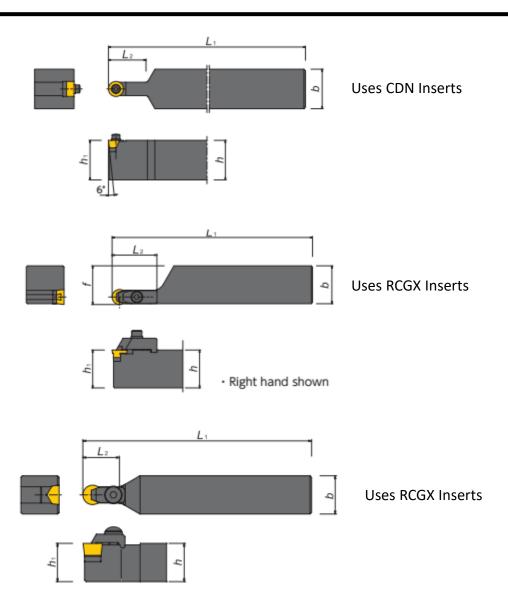
Examples

CLBN

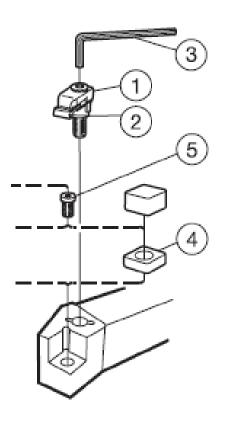
Toolholder Body (Made to order)


		Dimensions									Spare Parts						
Holder Number Stoo		DCK.	k h		b		h₁		L ₁		L ₂		L ₃		Clamp	Clamp	Insert
	R	L	(Inch)	(mm)	(Inch)	(mm)	(Inch)	(mm)	(Inch)	(mm)	(Inch)	(mm)	(Inch)	(mm)		Screw	
CLBN 1/20-6-L10			1.250	_	1.250	_	1.500	_	10.00	_	7.000	_	8.000	_			
CLBN 1/24-6-L10			1.500	_	1.500	_	1.500	_	10.00	_	7.000	_	8.000	_			
CLBN 1/2 32-6-L10			2.000	_	2.000	_	1.500	_	10.00	_	7.000	_	8.000	_			LNM / LNJ 6688





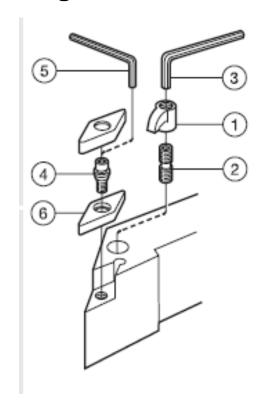
Tool Holders



Factors: Tool holders

Ceramic clamping system

- 1. Top clamp
- 2. Clamp screw
- 3. Clamp wrench
- 4. Shim seat
- 5. Shim seat screw



Factors: Tool holders

Hardware and holder importance.

A good holder and hardware affect the performance of inserts. A worn pocket could cause the insert to rock or shift in the middle of the cut causing the insert to break. The same is true of insert seats, clamps and lock pins. If inserts are chipping unexpectedly checking the holder and hardware is a must

- 1.top clamp
- 2. top clamp screw
- 3. wrench for top clamp
- 4. lock pin
- 5. lock pin wrench
- 6. shim seat

Holder Failure

Tool Holder Problems

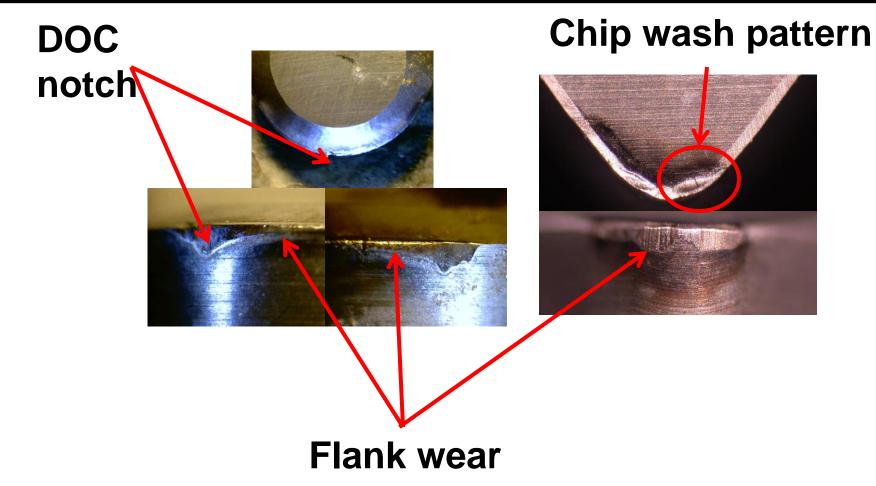
- Check holder for:
- Broken or chipped shims seats.
- Worn or bent clamps.
- Damaged holder (affects pocket support and alignment).
- Screws heads stripped or wrenches (replace immediately can cause problems to replace insert and tool alignment issues).

Tool holders Do's & don'ts

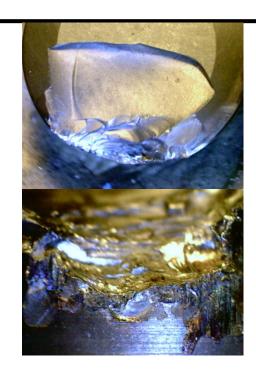
- 1. If the wrench or socket is replaced, replace the screw.
- 2. Never take a file to the holder or shim seat.
- 3. Replace the pin or shim seat screw when you replace shim seat.
- 4. Establish an area to put damaged holders to be sent out for repair.
- 5. Keep extra hardware for each holder at the workstation.
- 6. Clean the pocket thoroughly when indexing or changing the insert. This means don't just blow it off, use a rag and wipe pocket out also.
- 7. Never over torque screws. Both shim seat screws and top clamps only requite 15 in/lbs to secure insert.
- 8. Over torquing will damage holder pocket. Inserts and seats are harder than the body. The over torquing will move and compress the pocket changing insert alignment or improper support.

Insert Wear patterns & Failure Modes

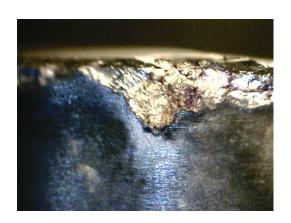
Causes of Failure

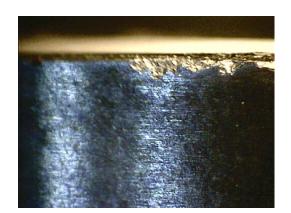

• It is important to understand why an insert failed. Knowing the mode of failure will make your job easier.

• To correctly judge failure, you need to look at all the factors involved in the machine, set-up, work holding, parts, tool holder, and finally the insert.



NORMAL wear




Excessive wear

- Problems
- Could scrap part
- Cause a following tool to fail if not caught
- More down time, due to possible holder damage and time to dial in size

Noticed by multiple fracture points

Causes
Tool alignment
Too slow
Too fast
DOC too light on thin wall parts
Boring with length to diameter ratios

Insert wear patterns Above center-line

Insert shows breakage across the top of the inserts from the cutting point

Other signs - Chatter, smeared finish, fluctuating size

Above Center Failure

Tool alignment causing above center-line condition.

- This can be caused from worn hardware
- Dirt or chip in pocket
- Pocket deformation from crashes and
- Broken tools and over torquing screws
- Stacking tolerance of holder, shim seat, and insert.
- Over torque on screws can change angle of how tool sets in the pocket.

REMEMBER CHANGE HARWARE & HOLDERS ON A REGULAR BASIS!

Insert wear patterns

Excessive doc notch

Nose of insert broken away

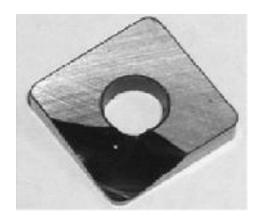
Leads to insert nose failure when run too long!

Remedies

- 1. More wear/abrasion resistant grade
- 2. Slow down SFM Increase IPR
- 3. Increase SFM Decrease IPR NOTE: Only change 1 factor at a time!

Insert wear patterns

Inclusion fracture


If an insert hits an inclusion, gas pocket, injection spout, or different material in a casting it will fracture down the face of the tool.

Insert wear patters

Excessive torquing on screws & Clamps

Fracture point comes from the lock pin area and moves forward. Typically, this fracture appears after the insert has cut the part because the insert crack normally won't break completely until tool is under pressure of cutting conditions.

^{* 15} in/lbs to secure insert, Clamps & Shims.

Troubleshooting

	Case	Cause	Measure		
Flank wear		 Cutting Speed Too High Feed Too Low Insert Geometry Unsuitable Part Material/insert Grade Incorrect 	 Reduce Cutting Speed Increase Feed Increase Insert Corner Radius Change Insert Grade 		
Crater Wear		 Unsuitable Cutting Conditions Insert Geometry Unsuitable 	 Smaller Cutting Edge Prep Angle Reduce Cutting Speed 		
Flaking		 Insert Geometry Unsuitable Insert cutting Over Center 	 Lower Feed Rate Smaller Cutting Edge Prep Angle Eliminate Honing Increase Feed Lower Tool Holder in Post 		
Fracture/ Chipping		 Insert Geometry Unsuitable Unsuitable Edge Treatment Using Coolant 	 Lower Feed Larger Cutting-Edge Prep Add Honing on Edge Prep Turn Off Coolant 		

Troubleshooting

Case/S	ymptom	Possible causes	Corrective measures			
Wear on face		 High temperature causes chemical reactions between the insert material and chips 	Use a coated grade Decrease both of the cutting speed and feed rate Widen the rake angle			
Notching wear		The work surface is too hard Boundary area has been oxidized Burrs, caused by chips in the sheared form, have been cut	Widen the side cutting edge angle Make the nose radius larger so that cutting is performed within the radius Use a round insert			
Plastic deformation		High cutting force and excessive heat is applied to the cutting edge	Choose a material/grade highly resistant to wear Decrease both of the cutting speed and feed rate Make the nose radius larger Use coolant			
Built-up edge		This occurs because the cutting temperature is lower than the recrystallization temperature of the work material	Increase the cutting speed Use coolant with excellent lubrication performance Change to a grade with less affinity to the work material			
Deposition		The deposition is caused to the face by a chemical reactions of the work material due to heat generation	Increase the cutting speed Widen the relief angle Hone the face with a mirror-like-surface finish Change to a grade with less affinity to the work material			
Clamping crack		The insert was clamped under improper seating conditions	Clean the clamping areas and install the insert in the recommended way Tighten to the specified torque			

Troubleshooting

Work Piece	Chipping		Feed Rate is Too HighUnsuitable Insert Selected	 Decrease the Feed Rate Use a Smaller Edge Prep Change Insert to More Wear Resistant Change the Cutting-Edge Angle of Holder 		
	Burring	and the same	Feed Rate is IncorrectShape of Insert is not Suitable	Decrease the Feed RateUse a Smaller Edge Prep		
	Chatter Mark		 Cutting Edge Force is too great Rigidity Of Work Piece Rigidity of Cutting Tool is Insufficient Insert Cutting Over Center 	 Decrease the Feed Rate Use a Smaller Edge Prep Ensure Tool Overhang is Minimized Change the Cutting-Edge Angle of the Hol Lower Tool Holder in Post 		
	Gouging	1.16日南	 Vibration of the Cutting Edge Due to Deposition/Built-up edge 	 Increase the Cutting Speed Change Insert Grade to a less Chemical similarities 		

Factors: order of checking

Leading in Innovation

1. Rolls/Parts – Slag, Inclusions, Gas Pockets, ETC. all cause additional shock and can cause insert failure.

2. Tool holder

Worn hard wear & Parts

Damage Pocket

Alignment

3. The machine and settings.

work holding (Chuck jaws)

program

offsets

speeds

feeds

Machining Mill Rolls With NTK Grades

Key Points for Machining Mill Rolls

- Hardness of the roll is an important factor. As the roll gets harder the SFM should be reduced.
- RCGX style inserts are the preferred insert for rigidity and cost savings.
- If making multiple passes with one edge, vary your DOC to move the wear on the insert edge and reduce notch wear.
- If you encounter chatter, increase your feed rate. Variable RPM controllers are helpful to reduce harmonics.
- Heavy chatter is often a sign of tooling being above centerline.
- Chilled and ductile iron rolls are typically softer and short chipping materials. Even after running in the mill, these rolls rarely exceed a 67 Shore hardness.
- Tool steel and CPM rolls run quite similar and are normally over 100 Shore hardness. These rolls have a higher Chrome and Cobalt content and are considered a longer chipping material. The combination of the material type and hardness require a slower speed to run successfully.
- RCGX 103 & 104 feed rate runs best at .006 IPR (0.15 mm/rev).

NTK Support

Ed Hofheins Product Manager – Ceramic Division (402) 250-3683 E-mail: ehofheins@Tungaloy-NTK.com

The link for the down loadable Catalogs & Fliers

https://www.ntkcuttingtools.com/us/

<u>Ceramic and CBN for steel mill applications CUTTING TOOLS Co., Ltd.</u>
<u>millrolls.pdf</u>

https://www.ntkcuttingtools.com/us/ https://tungaloy.com/us/

find us on:

